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ABSTRACT

The performance of signalized intersections in the field exhibit significant variation. Even when
considering a specific time period (i.e. PM peak period) on aweekday, the average delay experienced
by vehicles varies from day to day. This variation arises from a number of sources including
variationsin peak period traffic demands.

The use of micro simulation tools to analyze and/or predict the performance of intersections, and
more generally road sub-networks, is now common practice among traffic engineers. Popular micro
simulation tools, such as Paramics, VISSIM, Integration, Aimsum, and NetSim are considered
“stochastic” models in that they use pseudo random numbers to control random processes within the
simulation, such as lane changing decisions, desired speeds, etc. As a result, traffic engineers and
simulation model users typically carry out severa model runs, each with a different random number
seed, for each set of traffic and control conditions. Often, the results from the replications are
averaged in the hope that the mean of the multiple runs is a reliable predictor of the average
conditions that would occur in the field.

In this study we seek to address two key questions, namely:

(1) Does the current practice of conducting multiple simulation runs, each with a different random
seed but with the same traffic demands, adequately replicate the day-to-day variability typicaly
observed in the field?

(2) What is the best method by which to use simulation models to reflect day-to-day variability in
intersection performance?

Three methods of modelling day-to-day variability of intersection performance (in terms of delay)
are examined. Method 1, reflecting the typical current practice, introduces variability through the use
of different random number seeds but traffic demands are held constant. Method 2 consisted of using
only a single random number seed but traffic demands are randomly selected from a distribution fit
to field data. Method 3 consisted of using different random seeds and randomly selecting traffic
demands from the field calibrated distribution. For each method, eleven traffic demand scenarios
were devel oped encompassing intersection volume to capacity (v/c) ratios ranging from 0.6 to 1.10.

The results show that the current method of incorporation variability in simulation runs (i.e. Method
1) does not adequately capture the day-to-day variation observed in field peak hour approach
volumes. More specificaly,

1. The use of Method 1 results in intersection peak hour approach volumes that exhibit only
about half the variation observed in the field. Methods 2 and 3 exhibited variations in peak
hour approach volumes that were very similar to those observed in the field.

2. The average intersection delays obtained from the three methods differ by as much as 47%
suggesting that the method used to simulate day-to-day variability in intersection delays has a
significant influence on the results.

3. Thedifferencesin average intersection delays are sufficiently small at v/c less than about 0.8
that they are not likely to be of practical significance.

KEYWORDS: traffic signals, variability, intersection delay, simulation, peak hour volume.
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1.0 INTRODUCTION

Increasingly micro simulation models are being used by traffic engineers to analyze the expected
performance of road networks operating under proposed physical or operational changes. Most of
the popular micro simulation models, such as Paramics, VISSIM, Aimsun, Integration, and NetSim,
are discrete event simulation models that simulate the movement of individual vehicles as they travel
through the road network. Conceptually, each of these models can be considered to be composed of
various sub-models, each of which defines the logic associated with a specific behavioural attribute,
such as car-following, lane selection, routing, vehicle generation, etc. The micro simulation models
tend to differ in the details of these behavioural sub-models.

These micro simulation models are considered “stochastic” in that many of the behavioural sub-
models contain random distributions. Specific values are selected from the distribution using a
pseudo random number selected from a sequence of random numbers. A random number seed is
used to generate the sequence of random numbers. Each time the micro simulation model is
executed with the same random number seed the same sequence of random numbers is generated
and, if all model inputs remain unchanged, the model produces the same outputs.

However, if the random number seed is changed and all other model inputs remain unchanged, then
model outputs vary due to the different values selected from the distributions within the behavioural
sub-models. For example, vehicles are generated at the entry nodes (origins) based on the input
volumes and an assumed headway distribution. When a vehicle is generated the simulation model
assigns driver and vehicle characteristics such as vehicle type (car, bus, truck, etc.), vehicle length,
width, maximum acceleration and decel eration, maximum speed, maximum turn radius, etc. For each
driver, values are assigned for driver aggressiveness, reaction time, desired speed, critical gaps (for
lane changing, merging, crossing), destination (route), etc. Most of these attributes are selected from
distributions on the basis of the pseudo random numbers.

As aresult of the randomness of model results, traffic engineers and simulation model userstypically
carry out several model runs for each set of traffic and control conditions (each run with a different
random number seed) in order to imitate the randomnessin field observations. Often, the results from
the replications are averaged in the hope that the mean of the multiple runs is a reliable predictor of
the average conditions that would occur in the field.

This paper presents the finding of a study that has been carried out to determine the extent to which
the use of multiple runs each with a different random number seed captures the degree of variability
typically present in real networks.

This paper seeks to answer the following specific questions that begin to address these issues with
respect to modelling arterial networks;

1. What level of variability is introduced into the intersection approach volumes by the random
number seeds?

How doesthis level of variability compare to what is observed in the field?
How does the variability in approach volumes vary with the volume to capacity ratio?

4. What is the distribution of intersection delay resulting from different random seeds at different
volume to capacity ratio?

5. What implications do these results have in terms of appropriate methods for using micro
simulation models to evaluate alternatives?
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The following section summarizes findings from previous research that is relevant to this paper.
Section 3 examines the randomness in peak hour approach volumes that is created by the VISSIM
simulation model using each of the three methods for representing day-to-day variability. These
results are compared to the variation in peak hour approach volumes observed in field data. Section
4 explores the variation in intersection performance (in terms of delay) corresponding to each of the
three methods of representing day-to-day variability. Finaly, Section 5 provides conclusions and
recommendations.

20 LITERATURE REVIEW

21 REPRESENTING VARIABILITY IN MICRO-SIMULATION MODELS

There is a common consensus among traffic engineers and microscopic simulation model users on
the need for performing multiple runs when using any stochastic simulation model. When evaluating
the expected impact of one or more possible future treatments (e.g. new traffic control devices,
operating strategies, policies, etc.) the scenarios simulated typically consist of the base traffic
conditions (e.g. peak and off-peak traffic demands) modelled without the trestment(s) and then
modelled with the treatment(s). In current practice, it is typical to smulate each with and without
treatment scenario multiple times, each time with a different random number seed but holding all
other simulation model inputs constant. The median or the average results from multiple simulation
runs using different seeds are assumed to reflect the average traffic condition of a specific scenario.

There are ample examples in the literature in which this approach has been taken for various models
including SimTraffic (Shaaban et a., 2005), PARAMICS (Chu et a., 2004), VISSIM (Sayed et al.,
2004), Integration (Dion et a., 2005) and TRAF-Netsim (Garrow et al., 1997).

However, this is not the only method of modelling stochastic variability. In this paper we identify
three methods of modelling day-to-day variability of transportation system performance (Table 1).
Method 1, reflecting the typical current practice, introduces variability through the use of different
random number seeds but other model inputs, including traffic demands are held constant. In general,
many of the model inputs that are held constant in Method 1 are in fact subject to stochastic variation
and ought to be represented by a distribution. Peak hour approach volumes are particularly important
with respect to the performance of signalized intersection. Other factors that may influence
intersection performance and are subject to stochastic variations, such as the peak hour factor,
saturation flow rate, etc. are considered to have a smaller degree of variability (Hellinga and Abdy,
2007) and therefore the variability of these other factors is not separately modelled. Consequently,
Method 2 consists of using only a single random number seed but traffic demands are randomly
selected from a distribution that is calibrated to field data. Method 3 consists of using different
random seeds and randomly selecting traffic demands from the field calibrated distribution. In each
method, multiple runs of the simulation are conducted in order to estimate both the average (mean)
and variance of the transportation measures of performance that are of interest.

In the literature there is substantial variation in the methods used to decide on how many simulation
runs need to be conducted. Some researchers and practitioners arbitrarily decide on the required
numbers of runs. The literature shows that there is alarge variation in the number of runs considered
to be necessary such as 2 replications (Garrow et a., 1997), 3 replications (Smith et a., 2006), 5
replications (Sayed et a., 2004) and 30 replications (Dion et a., 2004).

Rather than arbitrarily selecting the number of runs, it is possible to determine the number of
simulation runs required to achieve a specified accuracy (Hellinga et a., 2007; Birst et al., 2007; Chu
et a., 2004; and Shaaban et a., 2005). Aninitial set of smulation runs is executed first and the mean
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and standard deviation of the performance measure is calculated. Using this mean and standard
deviation, the required number of simulation runsis calculated by

2
N =(ta,2£] 1
y7z;

Where 1 and 6 are the mean and standard deviation of the performance measure based on the initial
set of smulationsruns; ¢ isthe allowable error specified as afraction of themean x4 ; and t,,,isthe
critical value of the t-distribution at significance level « .

In a study by Birst et a., (2007) CORSIM, SimTraffic and VISSIM models were compared using
various levels of traffic congestion under pre timed signalized control. Using equation 1, the authors
determined the number of required runs at different volume to capacity ratio. It was found that more
runs are needed as the volume reached capacity due to increased variation. The increase in variation
isin line with the study by Hellinga et al., (2007) and Sullivan et a., (2006).

However the use of Equation 1 does not assist the model user in determining whether or not the
variation arising from the simulation model (from the use of different random seeds) appropriately
imitates the variation observed in the field.

In an effort to examine the implications of using Method 1, 2, or 3 for modelling variability, we focus
on signalized intersection performance as measured by average delay during a peak hour. In the next
section we examine the day-to-day variability that existsin arterial peak hour approach volumes and
use these field data to calibrate a distribution that is required for Methods 2 and 3.

22 VARIABILITY OF PEAK HOUR VOLUMESIN THE FIELD

There appears to be relatively little work reported in the literature examining the variability of
intersection performance in terms of day-to-day variations. Sullivan et al., (2006) conducted an
analysis to examine the impact of day to day variations in urban traffic peak hour volumes on
intersection service levels. Using weekday data from 22 directional continuous traffic counting
stations in the City of Milwaukee, the authors found that the coefficient of variation® (COV) of peak
hour traffic volume ranged from 5% to 16% with a mean of 8.9%.

Hellinga et a., (2007) conducted a similar analysis. Using weekday data from 16 continuous traffic
counting stations located mid-block on major arterial roadways in the City of Waterloo, the authors
found that the COV ranged from 5.4% to a maximum of 13.1% and on average is equal to 8.7%.

Hellinga et al., (2007) also developed a linear regression model showing that the COV of peak hour
volume decreases as the mean peak hour approach volume increases. Although the regression
intercept and coefficient are statistically significant at the 95% level, the regression explains only a
small portion of the variance within the data (adjusted R? = 0.15) and therefore must be viewed with
scepticism.

In this study we have aso acquired traffic counts for a 12 month period from 9 permanent count
stations located in the City of Toronto. The COV of peak hour volume was computed for these
locations using PM peak hour week-day non-holiday data and found to vary from 3.1% to 9.5% with
amean of 7.0%.

! Coefficient of variation = standard deviation / mean
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For al three data sets (Figure 1), the peak hour volumes were found to follow a Normal distribution.
Consequently, on the basis of these data, we conclude that a Normal distribution with a coefficient of
variation of 0.084 is suitable to model the variation in day-to-day peak hour approach volumes on
arterial roadways.

In the next section we simulate a hypothetical signalized intersection approach using the VISSIM
model and introduce variability using each of the three methods identified in Section 2.1. We
examine the performance of these methods in terms of the resulting distribution of peak hour
approach volumes.

3.0 VARIATION OF PEAK HOUR VOLUME

31 HYPOTHETICAL INTERSECTION

A hypothetical signalized intersection approach was simulated. The approach consisted of three
exclusive through lanes. All lane widths, grade, curb radii, etc. were considered to be ideal with no
on-street parking, no transit vehicles, and adequate storage and discharge space. The intersection
geometry was developed using links and connectors and modelled in VISSIM.

The intersection approach was controlled by a two-phase signal timing plan with a cycle length of
80s; 38s effective green for the modelled approach; 34s effective green for the cross street phase; and
4 seconds of inter green between each phase. Right-turn on red was not permitted and no turning
movements were modelled.

Six traffic demand scenarios were developed such that mean intersection volume to capacity (v/c)
ratios ranged from 0.8 to 1.10. Each demand scenario was replicated 50 times using each of the three
methods. For Method 1, each of the 50 replications used a different random number seed but all
approach volumes remained constant. For Method 2, a single random number seed was used for all
replications, but for each replication the peak hour approach volumes were randomly selected from a
Normal distribution having a mean equal to the mean volume for the v/c demand scenario being
simulated and a standard deviation equal to 0.084 times the mean (i.e. COV = 0.084). For each
replication of Method 3, a different random number seed and a random selected peak hour approach
volume (from the same distribution as used in Method 2) was applied. For all cases, the traffic stream
was assumed to consist of only passenger cars.

Vehicles were generated within the simulation model for 60 minutes. An additional 30 minutes were
used to ensure that all generated vehicles were able to complete their trips. For all smulations, the
signal timing plan and all other inputs except the approach volumes and random number seed
remained unchanged.

The VISSIM model was calibrated to have a base saturation flow rate of 1900 pcphpl.

32 RESULTS

The volume of vehicles generated by the simulation was recorded for each of the replications
conducted for each of the five traffic demand scenarios. The mean, standard deviation and COV of
the generated volumes were also computed.

Figure 2 shows the resulting mean approach peak hour volume generated by the simulation model for
each of the three methods as a function of the v/c ratio as well as the expected average peak hour
volume. The results show that all three methods produce average approach volumes that are very
similar to the target average. These results suggest that the distribution of approach volumes that
results from the use of random number seedsis symmetrical.
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Figure 3 shows the coefficient of variation of the generated peak hour volumes for each of the three
methods. The average coefficient of variation of peak hour approach volumes observed in the field
data (i.e. COV=0.084) is also shown in the Figure as a benchmark against which the results from the
three methods can be eval uated.

It is evident from the results that the COV of peak hour volume resulting from Method 1 is
substantially smaller than the variation exhibited in the field data. The COV from Method 1 ranged
from approximately 4.4% to 3.7% with an average of 4.1% (only 49% of the COV associated with
the field data).

Method 2 resulted in an average COV of peak hour volumes of 9.4% which is very similar to the
COV of the field data. This result is not surprising since the simulation runs were set up with
specified traffic demands that were drawn from a distribution having a COV = 8.4%.

Method 3 resulted in an average COV of peak hour volumes of 9.6%. This result suggests that the
use of random seeds with random volumes does not substantially increase the resulting variability in
the generated volumes.

The COV can be used to characterise the variability within the approach volume distribution,
however we are aso interested to determine the shape of the distribution. The resulting peak hour
volumes for each scenario were tested to determine the shape of distribution. For this task, the
Kolmogorov-Smirnov (KS) test was used to determine if each distribution could be adequately
described by the Normal distribution at the 99% level of confidence. It was found that the
distributions of generated peak hour volume for all demand scenarios for al three methods follow the
Normal distribution.

These results indicate that though Method 1 introduces variability into the peak hour approach
volumes generated by the ssmulation model this level of variability is substantially less than that
typically observed in the field. However, in most cases model users are interested in measures of
performance (i.e. intersection delay) rather than the approach volumes. Consequently, the next
section examines the impact of method used to simulate variability (i.e. Methods 1, 2, or 3) on
intersection delay.

40 |IMPACT ONINTERSECTION PERFORMANCE

Ideally, the distributions of intersection delay resulting from the use of Methods 1, 2, and 3 would be
compared to distributions of delay obtained from the field (similar to that done for the variation of
volumes in Section 3). Unfortunately, intersection delay can not be computed from permanent count
station data and direct measurement of delay is a resource intensive effort that is sensitive to
measurement errors (Teply and Evans, 1989; Teply, 1989; Colyar and Rouphail, 2003). Not
surprisingly then, we were unable to locate an existing database or collect sufficient data to create our
own database of measured intersection delays that would contain a sufficient number of observations
for a range of intersections experiencing a range of v/c conditions. Consequently, we opted to
consider a hypothetical intersection and to explore the impact that Methods 1, 2 and 3 have on
estimates of mean and variance of delay.

41 HYPOTHETICAL INTERSECTION

A hypothetical 4-leg intersection with a single exclusive lane on each approach was created. The
intersection was controlled by a 2-phase fixed time signal running the same signal timings as used in
Section 3. All geometry, queuing space, etc. was considered to be ideal.
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For each of the three methods described in Table 1 and Section 2.1, eleven traffic demand scenarios
were developed encompassing intersection volume to capacity (v/c) ratios ranging from 0.6 to 1.10.
Each demand scenario was simulated 100 times (replications). For all cases, the traffic stream was
assumed to consist of only passenger cars. Intersection volume was generated for 15 minutes.
Adequate link lengths were provided so that even at the highest volume to capacity ratio queues did
not spill off of the network. An additional 30 minutes were provided to ensure that adequate time is
available to capture delay of vehicles still in the system. The total delay including the car-following
delay was recorded. For all smulations, the signal timing plan, turning movement proportions and al
other inputs, except the average approach volumes and random number seed remained unchanged.

42 RESULTS

Figure 4 shows the average intersection delay (seconds/vehicle) as afunction of v/c ratio for al three
methods. In this figure, average delay represents the peak hour intersection delay averaged over
many days?.

Figure 5 shows the standard deviation of intersection delay as a function of v/c ratio for all three
methods.

The results depicted in Figures 4 and 5 suggest that Method 1, which produces the smallest
variability in peak hour approach volumes, also produces the lowest estimate of the mean delay and
the smallest variation in delay. In contrast, Method 3 provides the highest mean delay and the largest
variation in delay despite the fact that Method 3 produces amost the same mean and variance of
approach volumes as Method 2.

The F-test was used to determine if the variances of peak hour delay exhibited by the three methods
were statistically different. A 2-tailed test at the 95% confidence limit was used (Table 2). The test
results suggest that the three methods produce statistically different variances of estimated peak hour
intersection delay over almost all v/c ratios examined.

The t-test was used to determine if the mean delays estimated by the three methods are statistically
different from each other. A 2-tailed test at the 95% confidence limit was used assuming unequal
variances (as suggested by the results in Figure 5 and Table 2). The test results (Table 3) indicate
that the average delays resulting from the three methods are statistically different from each for
almost v/c scenarios examined.

The relative differences in the mean delay estimated by the three methods was quantified in terms of
the Relative Error (RE)

-2

Where
d = Averageintersection delay estimated using Method i (i = 2 or 3)
d; = Average intersection delay estimated using Method 1.

Figure 6 shows the relative error for different v/c ratios. The results indicate that the estimates of
average peak hour delay obtained from Method 2 may be as much as 15% larger than the

ZIn this study each simulation replication represents a different simulated “ day”
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corresponding average delay obtained using Method 1 and the estimates from Method 3 may be may
be as much as 50% larger. These findings have several implications:

1. Intersection evaluation and design is typically based primarily on mean intersection delay
(though other intersection characteristics may also be important such as queue lengths). The
intersection delay estimated from a microscopic simulation model is clearly dependent on the
method used to reflect variability (i.e. Method 1, 2, or 3). Depending on the method used,
different estimates of mean intersection delay may resullt.

2. In practical terms, the absolute magnitude of the differences (and relative differences) in
average delays estimated by the three methods is very small for v/c less than about 0.80.
Consequently, if only the mean delays are being used as measures of performance, then the
current practice (i.e. Method 1) of simulating multiple runs each with a different random seed
while holding traffic demands constant, is likely adequate.

3. Though there is no opportunity for a direct comparison between the mean delays estimated
by the smulation model and field delays, it seems reasonable to expect that since Method 1
significantly under represents the degree of variation of peak hour approach volumes
observed in the field, and the mean delays estimated from Method 1 are significantly lower
than the means delays estimated by Method 2 and 3, that the mean delays from Method 1 are
also lower than those that would be observed in the field.

Increasingly, traffic engineers are interested in more than just average performance. They are also
interested in variability, which is often thought of in terms of fraction of time that the intersection
performs more poorly than some specified level of service. For this type of analysis, the variability
of simulation results is particularly important. To illustrate, consider the fraction of days for which
the intersection is expected to experience peak hour delays greater than some threshold — in this case
computed as 1.4 times the mean intersection delay®. Figure 7 shows the fraction of the 100 simulated
“days’ (replications) for which the estimated peak hour delay exceeds the threshold delay for
Methods 1 and 2. The figure illustrates that if an analyst is using a simulation model to determine
how often adesign islikely to fail (i.e. delay exceeds some design threshold) then the use of Method
1 (with smaller variance) tends to predict many fewer ‘failures than does Method 2.

From a statistical perspective, the variance of delay is also important for testing whether or not any
change in the mean delay due to the evaluated treatment (e.g. traffic control strategy, technology, or
policy) is statistically significant. Given that each of the three Methods provides different estimates
of the mean delay and of the variation in delay, it is quite possibly, and even likely, that under some
conditions, conclusions about the significance of a treatment option may vary depending on the
Method used to model variability.

This possibility is particularly troubling given that the current practice is to model variability using
Method 1 and the evidence provided in this study suggests that Method 1 significantly under-
represents the day-to-day variability of intersection approach volumes observed in the field. This also
suggests that Method 1 significantly under-estimates the mean intersection delay and the variability
of intersection delay.

3 Since each method produces different mean delays (as per Figure 4) the threshold delay is computed separately for
each Method and for each v/c ratio.
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5.0 CONCLUSIONSAND RECOMMENDATIONS

The primary purpose of this study was to initiate an exploration (and spur discussion) of the most
appropriate ways to reflect variability that occurs in the field within micro-simulation studies when
these studies are used to establish the effect of a treatment option (e.g. traffic control strategy,
technology, policy, etc.). On the basis of the results obtained from this study, the following
conclusions can be made:

1. There appears to be at least three methods of reflecting variability within microscopic traffic
simulation models. The most commonly used method in practice is to hold all simulation
parameters and traffic demands constant and to conduct a set number of model runs
(replications), each replication having a different random number seed.

2. This method of introducing variability significantly under-represents (approximately half) the
day-to-day variability that is observed within peak hour intersection approach volumes.

3. The under-representation of variability in intersection approach volumes suggests that Method 1
also under estimates the mean delays that occur in the field.

4. Differences in mean delay appear to be very small for v/c ratios of less than about 0.8 and
suggest that for these conditions, there is little practical difference between using Method 1, 2, or
3.

5. The use of Method 1 produces significantly smaller variation in peak hour intersection delays
than Methods 2 and 3. As aresult of this smaller variation, Method 1 aso predicts many fewer
‘failures’ (i.e. peak hour intersection delay exceeding some threshold) than may actually be
experienced.

The evidence obtained from this study seems to suggest that Method 1 is not an adequate means of
capturing the day-to-day variation in peak hour approach volumes that is observed in the field.
However, the study also raises a number of unanswered questions, including the following:

1. The CQOV of peak hour approach volumes generated by the simulation model under Methods 1, 2,
and 3 seem to decline as mean peak hour approach volume increases. This observation has also
been made from field data (Hellinga and Abdy, 2007; Sullivan et al., 2006). However, the
sensitivity of this trend needs to be established for a wider range of mean volumes.

2. In practice, how can/should model users implement either Method 2 or Method 3 to simulate
day-to-day variability? How much field data must be collected to adequately define the
distribution of traffic demands? How many simulation runs must be performed?

3. This study has used only the VISSIM simulation model. Are the issues raised and results
obtained in this study applicable to other commonly used microscopic traffic simulation model?

The answers to these questions will require additional research.
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Table 1: Description of three methods for ssimulating day-to-day
variability of intersection performance

Method | Random Number Seeds | Input Volumes
Method 1 Random Constant
Method 2 Constant Random
Method 3 Random Random

Table 2: F-test resultsfrom comparing variance of delay

V/C

0.6 0.7 0.8 0.85 090 | 0925 | 095 | 0.975 | 1.00 1.05 1.10
Method 1vs2 | P-Vaue 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Conclusion | Dif Dif Dif Dif Dif Dif Dif Dif Dif Dif Dif
Method 2vs 3 | P-Vaue 0.331 | 0.028 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.015 | 0.036
Conclusion | Same | Same | Dif Dif Dif Dif Dif Dif Dif Dif Same
Method 1 vs3 | P-Vaue 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Conclusion | Dif Dif Dif Dif Dif Dif Dif Dif Dif Dif Dif
Dif = Means are statistically different.
Table 3: t-test results from comparing estimates of mean delay
V/C
0.6 0.7 0.8 0.85 090 | 0925 | 0.95 | 0975 | 1.00 1.05 1.10
Method 1vs2 | P-Vaue 0.124 | 0.373 | 0.023 | 0.000 | 0.000 | 0.001 | 0.001 | 0.003 | 0.006 | 0.016 | 0.054
Conclusion | Same | Same | Dif Dif Dif Dif Dif Dif Dif Dif | Same
Method 2vs3 | P-Vaue 0.000 | 0.112 | 0.075 | 0.023 | 0.000 [ 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Conclusion | Dif | Same | Same | Dif Dif Dif Dif Dif Dif Dif Dif
Method 1 vs3 | P-Vaue 0.006 | 0.010 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Conclusion Dif Dif Dif Dif Dif Dif Dif Dif Dif Dif Dif

Dif = Means are statistically different.
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Figure 1: COV of peak hour volumes observed in thefield
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Standard Deviation of Intersection Delay (seconds/vehicle)
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Figure5: Standard deviation of intersection delay
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Figure 6: Relative error of estimated inter section delay
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Figure 7: Fraction of days exceeding inter section delay threshold



